Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Administracja Centralna Uczelni - Wymiana międzynarodowa (S2)

Sylabus przedmiotu ADVANCED CHEMICAL REACTION ENGINEERING:

Informacje podstawowe

Kierunek studiów Wymiana międzynarodowa
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta
Obszary studiów
Profil
Moduł
Przedmiot ADVANCED CHEMICAL REACTION ENGINEERING
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Inżynierii Chemicznej i Procesowej
Nauczyciel odpowiedzialny Halina Murasiewicz <Halina.Murasiewicz@zut.edu.pl>
Inni nauczyciele Bogdan Ambrożek <Bogdan.Ambrozek@zut.edu.pl>, Halina Murasiewicz <Halina.Murasiewicz@zut.edu.pl>
ECTS (planowane) 4,0 ECTS (formy) 4,0
Forma zaliczenia zaliczenie Język angielski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW1 30 2,00,60zaliczenie
ćwiczenia audytoryjneA1 30 2,00,40zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Fundamentals of chemical engineering

Cele przedmiotu

KODCel modułu/przedmiotu
C-1The student will be able to: 1.Describe and define the rate of reaction. 2.Derive the mass balance equation. 3.Apply the mass balance equation to the most common types of industrial reactors. 4.Write the rate law in terms of concentrations, and temperature. 5.Use nonlinear regression to determine the rate law parameters. 6.Apply the differential and integral methods for analysis of reactor data. 7.Define a catalyst and describe its properties. 8.Describe the steps in a catalytic reaction. 9.Suggest a mechanism and apply the concept of a rate-limiting step to derive a rate law.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Derivation of general mass balance equations.4
T-A-2Reactor sizing.2
T-A-3Analysis of stoichiometry.2
T-A-4Analysis of rate data.4
T-A-5Analysis of catalytic reactors .4
T-A-6Analysis of three-phase reactors.3
T-A-7Analysis of isothermal and nonisothermal reactors.5
T-A-8Analysis of biochemical reactors.2
T-A-9Chemical reactor Design using ASPEN Plus.4
30
wykłady
T-W-1Introduction. Fundamental concepts.2
T-W-2The General Mass Balance Equation. Reactor sizing.3
T-W-3Stoichiometry. Conversion.3
T-W-4The Reaction Order. The Rate Law.4
T-W-5Collection and analysis of rate data.2
T-W-6Multiple reactions. Reaction mechanisms.3
T-W-7Catalytic reactors.2
T-W-8Three-phase reactors.2
T-W-9Isothermal and nonisothermal reactor design.6
T-W-10Biochemical reactors.3
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Class participation30
A-A-2Solving computational problems20
50
wykłady
A-W-1Class participation30
A-W-2Tutorial5
A-W-3Individual work15
50

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Lecture illustrated by Power Point presentation and computer simulation
M-2Classis illustrated by computer and manual calculations

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Periodic assessment of student achievement
S-2Ocena podsumowująca: Lecture: exam at the end of the semester Classis: written test

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WTiICh_1-_??_W01
The student will be able to: 1.Describe and define the rate of reaction. 2.Derive the mass balance equation. 3.Write the rate law in terms of concentrations, and temperature. 4.Define a catalyst and describe its properties. 5.Describe the steps in a catalytic reaction.
C-1T-W-7, T-W-8, T-W-10, T-W-9, T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6M-1, M-2S-1, S-2

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WTiICh_1-_??_U01
The student will be able to: 1.Apply the mass balance equation to the most common types of industrial reactors. 2.Use nonlinear regression to determine the rate law parameters. 3.Apply the differential and integral methods for analysis of reactor data.
C-1T-A-1, T-A-4M-1, M-2S-1, S-2

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WTiICh_1-_??_K01
The student will be able to suggest a mechanism and apply the concept of a rate-limiting step to derive a rate law.
C-1T-W-4, T-W-6, T-A-4, T-A-5M-1, M-2S-1, S-2

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
WM-WTiICh_1-_??_W01
The student will be able to: 1.Describe and define the rate of reaction. 2.Derive the mass balance equation. 3.Write the rate law in terms of concentrations, and temperature. 4.Define a catalyst and describe its properties. 5.Describe the steps in a catalytic reaction.
2,0
3,0The student is able to describe and define the rate of reaction, derive the mass balance equation, write the rate law in terms of concentrations, and temperature, define a catalyst and describe its properties and describe the steps in a catalytic reaction.
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
WM-WTiICh_1-_??_U01
The student will be able to: 1.Apply the mass balance equation to the most common types of industrial reactors. 2.Use nonlinear regression to determine the rate law parameters. 3.Apply the differential and integral methods for analysis of reactor data.
2,0
3,0The student is able to: 1.Apply the mass balance equation to the most common types of industrial reactors. 2.Use nonlinear regression to determine the rate law parameters. 3.Apply the differential and integral methods for analysis of reactor data.
3,5
4,0
4,5
5,0

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
WM-WTiICh_1-_??_K01
The student will be able to suggest a mechanism and apply the concept of a rate-limiting step to derive a rate law.
2,0
3,0The student is able to suggest a mechanism and apply the concept of a rate-limiting step to derive a rate law.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. Fogler H.S., Elements of chemical reaction engineering, Prentice-Hall, New Jersey, 2009
  2. Levenspiel O., Chemical reaction engineering, Wiley, New York, 1999
  3. Luyben W.L., Chemical reactor design and control, Wiley, New York, 2007

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Derivation of general mass balance equations.4
T-A-2Reactor sizing.2
T-A-3Analysis of stoichiometry.2
T-A-4Analysis of rate data.4
T-A-5Analysis of catalytic reactors .4
T-A-6Analysis of three-phase reactors.3
T-A-7Analysis of isothermal and nonisothermal reactors.5
T-A-8Analysis of biochemical reactors.2
T-A-9Chemical reactor Design using ASPEN Plus.4
30

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Introduction. Fundamental concepts.2
T-W-2The General Mass Balance Equation. Reactor sizing.3
T-W-3Stoichiometry. Conversion.3
T-W-4The Reaction Order. The Rate Law.4
T-W-5Collection and analysis of rate data.2
T-W-6Multiple reactions. Reaction mechanisms.3
T-W-7Catalytic reactors.2
T-W-8Three-phase reactors.2
T-W-9Isothermal and nonisothermal reactor design.6
T-W-10Biochemical reactors.3
30

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Class participation30
A-A-2Solving computational problems20
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Class participation30
A-W-2Tutorial5
A-W-3Individual work15
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WTiICh_1-_??_W01The student will be able to: 1.Describe and define the rate of reaction. 2.Derive the mass balance equation. 3.Write the rate law in terms of concentrations, and temperature. 4.Define a catalyst and describe its properties. 5.Describe the steps in a catalytic reaction.
Cel przedmiotuC-1The student will be able to: 1.Describe and define the rate of reaction. 2.Derive the mass balance equation. 3.Apply the mass balance equation to the most common types of industrial reactors. 4.Write the rate law in terms of concentrations, and temperature. 5.Use nonlinear regression to determine the rate law parameters. 6.Apply the differential and integral methods for analysis of reactor data. 7.Define a catalyst and describe its properties. 8.Describe the steps in a catalytic reaction. 9.Suggest a mechanism and apply the concept of a rate-limiting step to derive a rate law.
Treści programoweT-W-7Catalytic reactors.
T-W-8Three-phase reactors.
T-W-10Biochemical reactors.
T-W-9Isothermal and nonisothermal reactor design.
T-W-1Introduction. Fundamental concepts.
T-W-2The General Mass Balance Equation. Reactor sizing.
T-W-3Stoichiometry. Conversion.
T-W-4The Reaction Order. The Rate Law.
T-W-5Collection and analysis of rate data.
T-W-6Multiple reactions. Reaction mechanisms.
Metody nauczaniaM-1Lecture illustrated by Power Point presentation and computer simulation
M-2Classis illustrated by computer and manual calculations
Sposób ocenyS-1Ocena formująca: Periodic assessment of student achievement
S-2Ocena podsumowująca: Lecture: exam at the end of the semester Classis: written test
Kryteria ocenyOcenaKryterium oceny
2,0
3,0The student is able to describe and define the rate of reaction, derive the mass balance equation, write the rate law in terms of concentrations, and temperature, define a catalyst and describe its properties and describe the steps in a catalytic reaction.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WTiICh_1-_??_U01The student will be able to: 1.Apply the mass balance equation to the most common types of industrial reactors. 2.Use nonlinear regression to determine the rate law parameters. 3.Apply the differential and integral methods for analysis of reactor data.
Cel przedmiotuC-1The student will be able to: 1.Describe and define the rate of reaction. 2.Derive the mass balance equation. 3.Apply the mass balance equation to the most common types of industrial reactors. 4.Write the rate law in terms of concentrations, and temperature. 5.Use nonlinear regression to determine the rate law parameters. 6.Apply the differential and integral methods for analysis of reactor data. 7.Define a catalyst and describe its properties. 8.Describe the steps in a catalytic reaction. 9.Suggest a mechanism and apply the concept of a rate-limiting step to derive a rate law.
Treści programoweT-A-1Derivation of general mass balance equations.
T-A-4Analysis of rate data.
Metody nauczaniaM-1Lecture illustrated by Power Point presentation and computer simulation
M-2Classis illustrated by computer and manual calculations
Sposób ocenyS-1Ocena formująca: Periodic assessment of student achievement
S-2Ocena podsumowująca: Lecture: exam at the end of the semester Classis: written test
Kryteria ocenyOcenaKryterium oceny
2,0
3,0The student is able to: 1.Apply the mass balance equation to the most common types of industrial reactors. 2.Use nonlinear regression to determine the rate law parameters. 3.Apply the differential and integral methods for analysis of reactor data.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WTiICh_1-_??_K01The student will be able to suggest a mechanism and apply the concept of a rate-limiting step to derive a rate law.
Cel przedmiotuC-1The student will be able to: 1.Describe and define the rate of reaction. 2.Derive the mass balance equation. 3.Apply the mass balance equation to the most common types of industrial reactors. 4.Write the rate law in terms of concentrations, and temperature. 5.Use nonlinear regression to determine the rate law parameters. 6.Apply the differential and integral methods for analysis of reactor data. 7.Define a catalyst and describe its properties. 8.Describe the steps in a catalytic reaction. 9.Suggest a mechanism and apply the concept of a rate-limiting step to derive a rate law.
Treści programoweT-W-4The Reaction Order. The Rate Law.
T-W-6Multiple reactions. Reaction mechanisms.
T-A-4Analysis of rate data.
T-A-5Analysis of catalytic reactors .
Metody nauczaniaM-1Lecture illustrated by Power Point presentation and computer simulation
M-2Classis illustrated by computer and manual calculations
Sposób ocenyS-1Ocena formująca: Periodic assessment of student achievement
S-2Ocena podsumowująca: Lecture: exam at the end of the semester Classis: written test
Kryteria ocenyOcenaKryterium oceny
2,0
3,0The student is able to suggest a mechanism and apply the concept of a rate-limiting step to derive a rate law.
3,5
4,0
4,5
5,0