Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Administracja Centralna Uczelni - Wymiana międzynarodowa (S2)

Sylabus przedmiotu MATHS:

Informacje podstawowe

Kierunek studiów Wymiana międzynarodowa
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta
Obszary studiów
Profil
Moduł
Przedmiot MATHS
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Bioinżynierii
Nauczyciel odpowiedzialny Arkadiusz Telesiński <Arkadiusz.Telesinski@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 4,0 ECTS (formy) 4,0
Forma zaliczenia egzamin Język angielski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW1 25 2,00,62egzamin
ćwiczenia audytoryjneA1 20 2,00,38zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Basic mathematical knowledge

Cele przedmiotu

KODCel modułu/przedmiotu
C-1The aim of the course is to acquaint the student with the basic methods of linear algebra and mathematical analysis appearing in the sciences of life. After the course the student should demonstrate: knowledge of basic operations on matrices, the ability to solve systems of equations for calculating the limits of sequences and functions, examination of a function and the calculation of basic integrals

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Linear equations. Solving linear equations (Gauss-Jordan algorithm)2
T-A-2Matrices. Equality of matrices. Addition of matrices. Scalar multiple of a matrix. Matrix product. Linear transformations. The identity matrix. Non–singular matrix. Symmetric and skew–symmetric matrix3
T-A-3Determinants. Minors. Cramer’s rule2
T-A-4Complex numbers. Geometric representation of complex numbers. Complex conjugate. Modulus of a complex number. Ratio formulae. Argument of a complex number. De Moivre’s theorem3
T-A-5Function limits and continuity. Operations on limits. Rational functions. Monotone functions2
T-A-6Derivatives of functions of one real variable. L'Hopital’s rule. Function extremes. Study of function4
T-A-7Integrals. Indefinite integrals. Riemann's integrals4
20
wykłady
T-W-1Complex numbers (basic algebraic properties, geometric interpretation of complex numbers)4
T-W-2Elements of linear algebra (addition, multiplication, and matrix inversion, solving systems of linear equations)4
T-W-3The definition of numerical sequence of numbers, basic operations on strings, over the border, series of numbers4
T-W-4Continuity and derivative functions, properties and its use of derivative5
T-W-5Extremes function, the study of a function3
T-W-6Indefinite and closed integrals5
25

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Participation in worhshops20
A-A-2Self solving mathematics tasks15
A-A-3Preparing to pass workshops15
50
wykłady
A-W-1Participation in lectures25
A-W-2Reading the specified literature15
A-W-3Preparing to pass lectures10
50

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Lectures
M-2Workshops
M-3Self solving mathematics tasks

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Evaluation of self solving mathematics tasks
S-2Ocena podsumowująca: Test

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WKSiR_2-_null_W01
Student has knowleadge about basics of linear algebra and analysis of one real variable functions
C-1T-A-1, T-A-2, T-A-3, T-A-4, T-A-5, T-A-6, T-A-7, T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6M-1, M-2, M-3S-1, S-2

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WKSiR_2-_null_U01
Student can solve mathematics tasks
C-1T-A-1, T-A-2, T-A-3, T-A-4, T-A-5, T-A-6, T-A-7M-2, M-3S-1

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WKSiR_2-_null_K01
Student is aware of the importance of mathematics in life sciences
C-1T-A-1, T-A-2, T-A-3, T-A-4, T-A-5, T-A-6, T-A-7M-3S-1

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
WM-WKSiR_2-_null_W01
Student has knowleadge about basics of linear algebra and analysis of one real variable functions
2,0
3,0Student has basic knowledge about linear algebra and derivatives
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
WM-WKSiR_2-_null_U01
Student can solve mathematics tasks
2,0
3,0Student can solve basic mathematics tasks
3,5
4,0
4,5
5,0

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
WM-WKSiR_2-_null_K01
Student is aware of the importance of mathematics in life sciences
2,0
3,0Student knows the meaning of maths in life sciences
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. Williams G., Linear algebra with applications, 2014
  2. Malik S.C., Arora S, Mathematical analysis, 2010

Literatura dodatkowa

  1. Strang G., Introduction to linear algebra, 2009
  2. Dacorogna B., Tanteri C., Mathematical analysis for engineers, 2012

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Linear equations. Solving linear equations (Gauss-Jordan algorithm)2
T-A-2Matrices. Equality of matrices. Addition of matrices. Scalar multiple of a matrix. Matrix product. Linear transformations. The identity matrix. Non–singular matrix. Symmetric and skew–symmetric matrix3
T-A-3Determinants. Minors. Cramer’s rule2
T-A-4Complex numbers. Geometric representation of complex numbers. Complex conjugate. Modulus of a complex number. Ratio formulae. Argument of a complex number. De Moivre’s theorem3
T-A-5Function limits and continuity. Operations on limits. Rational functions. Monotone functions2
T-A-6Derivatives of functions of one real variable. L'Hopital’s rule. Function extremes. Study of function4
T-A-7Integrals. Indefinite integrals. Riemann's integrals4
20

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Complex numbers (basic algebraic properties, geometric interpretation of complex numbers)4
T-W-2Elements of linear algebra (addition, multiplication, and matrix inversion, solving systems of linear equations)4
T-W-3The definition of numerical sequence of numbers, basic operations on strings, over the border, series of numbers4
T-W-4Continuity and derivative functions, properties and its use of derivative5
T-W-5Extremes function, the study of a function3
T-W-6Indefinite and closed integrals5
25

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Participation in worhshops20
A-A-2Self solving mathematics tasks15
A-A-3Preparing to pass workshops15
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Participation in lectures25
A-W-2Reading the specified literature15
A-W-3Preparing to pass lectures10
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WKSiR_2-_null_W01Student has knowleadge about basics of linear algebra and analysis of one real variable functions
Cel przedmiotuC-1The aim of the course is to acquaint the student with the basic methods of linear algebra and mathematical analysis appearing in the sciences of life. After the course the student should demonstrate: knowledge of basic operations on matrices, the ability to solve systems of equations for calculating the limits of sequences and functions, examination of a function and the calculation of basic integrals
Treści programoweT-A-1Linear equations. Solving linear equations (Gauss-Jordan algorithm)
T-A-2Matrices. Equality of matrices. Addition of matrices. Scalar multiple of a matrix. Matrix product. Linear transformations. The identity matrix. Non–singular matrix. Symmetric and skew–symmetric matrix
T-A-3Determinants. Minors. Cramer’s rule
T-A-4Complex numbers. Geometric representation of complex numbers. Complex conjugate. Modulus of a complex number. Ratio formulae. Argument of a complex number. De Moivre’s theorem
T-A-5Function limits and continuity. Operations on limits. Rational functions. Monotone functions
T-A-6Derivatives of functions of one real variable. L'Hopital’s rule. Function extremes. Study of function
T-A-7Integrals. Indefinite integrals. Riemann's integrals
T-W-1Complex numbers (basic algebraic properties, geometric interpretation of complex numbers)
T-W-2Elements of linear algebra (addition, multiplication, and matrix inversion, solving systems of linear equations)
T-W-3The definition of numerical sequence of numbers, basic operations on strings, over the border, series of numbers
T-W-4Continuity and derivative functions, properties and its use of derivative
T-W-5Extremes function, the study of a function
T-W-6Indefinite and closed integrals
Metody nauczaniaM-1Lectures
M-2Workshops
M-3Self solving mathematics tasks
Sposób ocenyS-1Ocena formująca: Evaluation of self solving mathematics tasks
S-2Ocena podsumowująca: Test
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student has basic knowledge about linear algebra and derivatives
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WKSiR_2-_null_U01Student can solve mathematics tasks
Cel przedmiotuC-1The aim of the course is to acquaint the student with the basic methods of linear algebra and mathematical analysis appearing in the sciences of life. After the course the student should demonstrate: knowledge of basic operations on matrices, the ability to solve systems of equations for calculating the limits of sequences and functions, examination of a function and the calculation of basic integrals
Treści programoweT-A-1Linear equations. Solving linear equations (Gauss-Jordan algorithm)
T-A-2Matrices. Equality of matrices. Addition of matrices. Scalar multiple of a matrix. Matrix product. Linear transformations. The identity matrix. Non–singular matrix. Symmetric and skew–symmetric matrix
T-A-3Determinants. Minors. Cramer’s rule
T-A-4Complex numbers. Geometric representation of complex numbers. Complex conjugate. Modulus of a complex number. Ratio formulae. Argument of a complex number. De Moivre’s theorem
T-A-5Function limits and continuity. Operations on limits. Rational functions. Monotone functions
T-A-6Derivatives of functions of one real variable. L'Hopital’s rule. Function extremes. Study of function
T-A-7Integrals. Indefinite integrals. Riemann's integrals
Metody nauczaniaM-2Workshops
M-3Self solving mathematics tasks
Sposób ocenyS-1Ocena formująca: Evaluation of self solving mathematics tasks
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student can solve basic mathematics tasks
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WKSiR_2-_null_K01Student is aware of the importance of mathematics in life sciences
Cel przedmiotuC-1The aim of the course is to acquaint the student with the basic methods of linear algebra and mathematical analysis appearing in the sciences of life. After the course the student should demonstrate: knowledge of basic operations on matrices, the ability to solve systems of equations for calculating the limits of sequences and functions, examination of a function and the calculation of basic integrals
Treści programoweT-A-1Linear equations. Solving linear equations (Gauss-Jordan algorithm)
T-A-2Matrices. Equality of matrices. Addition of matrices. Scalar multiple of a matrix. Matrix product. Linear transformations. The identity matrix. Non–singular matrix. Symmetric and skew–symmetric matrix
T-A-3Determinants. Minors. Cramer’s rule
T-A-4Complex numbers. Geometric representation of complex numbers. Complex conjugate. Modulus of a complex number. Ratio formulae. Argument of a complex number. De Moivre’s theorem
T-A-5Function limits and continuity. Operations on limits. Rational functions. Monotone functions
T-A-6Derivatives of functions of one real variable. L'Hopital’s rule. Function extremes. Study of function
T-A-7Integrals. Indefinite integrals. Riemann's integrals
Metody nauczaniaM-3Self solving mathematics tasks
Sposób ocenyS-1Ocena formująca: Evaluation of self solving mathematics tasks
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student knows the meaning of maths in life sciences
3,5
4,0
4,5
5,0