Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Techniki Morskiej i Transportu - Oceanotechnika (S1)

Sylabus przedmiotu Mechanika konstrukcji:

Informacje podstawowe

Kierunek studiów Oceanotechnika
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Mechanika konstrukcji
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Mechaniki Konstrukcji
Nauczyciel odpowiedzialny Maciej Taczała <Maciej.Taczala@zut.edu.pl>
Inni nauczyciele Maciej Taczała <Maciej.Taczala@zut.edu.pl>, Tomasz Urbański <Tomasz.Urbanski@zut.edu.pl>
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW4 15 1,00,67zaliczenie
laboratoriaL4 15 2,00,33zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Podstawowe wiadomości, kompetencje i umiejętności z matematyki
W-2Podstawowe wiadomości, kompetencje i umiejętności z mechaniki

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zapoznanie studentów z podstawami metody elementów skończonych jako narzędzia analizy wytrzymałościowej konstrukcji.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Przeszkolenie BHP - stanowiskowe.1
T-L-2Analiza prętów rozciąganych i ściskanych pod wzgledem wytrzymałosciowym.1
T-L-3Analiza plaskich układów kratowych pod wzgledem wytrzymałosciowym.2
T-L-4Analiza przestrzennych układów kratowych pod względem wytrzymałościowym.2
T-L-5Analiza ram plaskich pod wzgledem wytrzymałosciowym.2
T-L-6Analiza ram przestrzennych pod wzgledem wytrzymałosciowym.2
T-L-7Analiza belek zginanych pod wzgledem wytrzymałosciowym.3
T-L-8Zaliczenie formy zajęć2
15
wykłady
T-W-1Wprowadzenie do metod numerycznych wytrzymałościowej analizy konstrukcji.1
T-W-2Podstawy metody elementów skończonych: pojecie sztywności i podatności, transformacja, macierz sztywności, agregacja macierzy sztywności elementów, solvery: dla posaci pasmowej, skyline zapisu macierzy sztywności, solver frontalny. Warunki brzegowe, wektor obciążeń, rozwiązanie układów równań, wyznaczanie naprężeń.3
T-W-3Siatka podziału na ES, aspekty geometryczne generowania siatki, numeracja węzłów, automatyczna generacja siatki podziału2
T-W-4Przemieszczenia przygotowane, zasada prac przygotowanych, pojęcie funkcji kształtu, wyprowadzenie równań MES, ekwiwalentne obciążenia węzłowe.2
T-W-5Macierzowa postać związków konstytutywnych, macierz odkształcenie-przemieszczenie, obliczanie naprężeń.2
T-W-6Rodzaje elementów skończonych: prętowy, belkowy, płaskiego stanu naprężenia, przestrzenne - funkcje kształtu i macierze odkształcenie-przemieszczenie dla poszczególnych typów elementów.3
T-W-7Macierz geometryczna, analiza stateczności MES.1
T-W-8Zaliczenie zajęć.1
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Uczestnictwo w zajęciach15
A-L-2Przygotowanie do zajęć12
A-L-3Opracowanie i analiza wyników22
49
wykłady
A-W-1uczestnictwo w zajęciach15
A-W-2Studiowanie literatury4
A-W-3Przygotowanie do zaliczenia6
25

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Metody podające: wykład informacyjny, objaśnienie lub wyjaśnienie.
M-2Metody problemowe: wykład problemowy.
M-3Metody praktyczne: pokaz, ćwiczenia przedmiotowe.
M-4Metody programowane: z użyciem komputera.

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Ocena ciągła
S-2Ocena podsumowująca: Ocena na podstawie wyników pracy zaliczeniowej (wykłady).
S-3Ocena podsumowująca: Ocena na podstawie wyników kolokwiów zaliczeniowych (ćwiczenia laboratoryjne).

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
O_1A_B21_W01
ma wiedzę w zakresie podstaw modelowania numerycznego, analizy wytrzymałościowej i optymalizacji konstrukcji metodą elementów skończonych
O_1A_W07, O_1A_W18, O_1A_W22C-1T-W-7, T-W-8, T-W-1, T-W-5, T-W-2, T-W-3, T-W-6, T-W-4, T-L-5, T-L-2, T-L-3, T-L-4, T-L-6, T-L-7M-1, M-2, M-3S-2

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
O_1A_B21_U01
potrafi przeprowadzać symulacje numeryczne wytrzymałości konstrukcji, interpretować wyniki i wyciągać wnioski
O_1A_U06C-1T-W-7, T-W-8, T-W-1, T-W-5, T-W-2, T-W-3, T-W-6, T-W-4, T-L-5, T-L-2, T-L-3, T-L-4, T-L-6, T-L-7M-1, M-2, M-3S-2

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
O_1A_B21_W01
ma wiedzę w zakresie podstaw modelowania numerycznego, analizy wytrzymałościowej i optymalizacji konstrukcji metodą elementów skończonych
2,0nie ma wiedzy w zakresie podstaw modelowania numerycznego, analizy wytrzymałościowej i optymalizacji konstrukcji metodą elementów skończonych
3,0ma wiedzę w zakresie podstaw modelowania numerycznego, analizy wytrzymałościowej i optymalizacji konstrukcji metodą elementów skończonych niezbędną do rozwiązania problemów na podstawowym poziomie trudności.
3,5ma wiedzę w zakresie podstaw modelowania numerycznego, analizy wytrzymałościowej i optymalizacji konstrukcji metodą elementów skończonych niezbędną do rozwiązania problemów na średnim poziomie trudności.
4,0ma wiedzę w zakresie podstaw modelowania numerycznego, analizy wytrzymałościowej i optymalizacji konstrukcji metodą elementów skończonych niezbędną do rozwiązania problemów na zaawansowanym poziomie trudności.
4,5ma wiedzę w zakresie podstaw modelowania numerycznego, analizy wytrzymałościowej i optymalizacji konstrukcji metodą elementów skończonych niezbędną do sformułowania i rozwiązania problemów na średnim poziomie trudności.
5,0ma wiedzę w zakresie podstaw modelowania numerycznego, analizy wytrzymałościowej i optymalizacji konstrukcji metodą elementów skończonych niezbędną do sformułowania i rozwiązania problemów na zaawansowanym poziomie trudności.

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
O_1A_B21_U01
potrafi przeprowadzać symulacje numeryczne wytrzymałości konstrukcji, interpretować wyniki i wyciągać wnioski
2,0Student nie potrafi przeprowadzić symulacji numerycznych wytrzymałości konstrukcji, interpretować wyników i wyciągać wniosków
3,0Student potrafi przeprowadzać symulacje numeryczne wytrzymałości konstrukcji na podstawowym poziomie trudności, interpretować wyniki i wyciągać podstawowe wnioski
3,5Student potrafi przeprowadzać symulacje numeryczne wytrzymałości konstrukcji na średnim poziomie trudności, interpretować wyniki i wyciągać wnioski
4,0Student potrafi przeprowadzać symulacje numeryczne wytrzymałości konstrukcji na zaawansowanym poziomie trudności, interpretować wyniki i wyciągać wnioski
4,5Student potrafi przeprowadzać symulacje numeryczne wytrzymałości konstrukcji na średnim poziomie trudności, potrafi dokonać analizy wyników i wyciągać wnioski
5,0Student potrafi przeprowadzać symulacje numeryczne wytrzymałości konstrukcji na zaawansowanym poziomie trudności, potrafi dokonać analizy wyników i wyciągać wnioski

Literatura podstawowa

  1. Gustaw Rakowski, Zbigniew Kacprzyk, Metoda elementów skończonych w mechanice konstrukcji, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2005
  2. Grzegorz Gasiak, Metody numeryczne w mechanice -- Cz. 1, Metoda elementów skończonych, Politechnika Opolska, Opole, 1997
  3. Tomasz Łodygowski, Witold Kąkol, Metoda elementów skończonych w wybranych zagadnieniach mechaniki konstrukcji inżynierskich, Politechnika Poznańska, Poznań, 1994

Literatura dodatkowa

  1. współaut. Marian Dacko [et al.]., Metoda elementów skończonych w mechanice konstrukcji, Arkady, Warszawa, 1994
  2. Eugeniusz Rusiński, Metoda elementów skończonych : system COSMOS, Wydaw. Komunikacji i Łączności, Warszawa, 1994
  3. Lilianna Sadecka, Metoda różnic skończonych i metoda elementów skończonych w zagadnieniach mechaniki konstrukcji i podłoża, Oficyna Wydawnicza. Politechnika Opolska, Opole, 2010

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Przeszkolenie BHP - stanowiskowe.1
T-L-2Analiza prętów rozciąganych i ściskanych pod wzgledem wytrzymałosciowym.1
T-L-3Analiza plaskich układów kratowych pod wzgledem wytrzymałosciowym.2
T-L-4Analiza przestrzennych układów kratowych pod względem wytrzymałościowym.2
T-L-5Analiza ram plaskich pod wzgledem wytrzymałosciowym.2
T-L-6Analiza ram przestrzennych pod wzgledem wytrzymałosciowym.2
T-L-7Analiza belek zginanych pod wzgledem wytrzymałosciowym.3
T-L-8Zaliczenie formy zajęć2
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Wprowadzenie do metod numerycznych wytrzymałościowej analizy konstrukcji.1
T-W-2Podstawy metody elementów skończonych: pojecie sztywności i podatności, transformacja, macierz sztywności, agregacja macierzy sztywności elementów, solvery: dla posaci pasmowej, skyline zapisu macierzy sztywności, solver frontalny. Warunki brzegowe, wektor obciążeń, rozwiązanie układów równań, wyznaczanie naprężeń.3
T-W-3Siatka podziału na ES, aspekty geometryczne generowania siatki, numeracja węzłów, automatyczna generacja siatki podziału2
T-W-4Przemieszczenia przygotowane, zasada prac przygotowanych, pojęcie funkcji kształtu, wyprowadzenie równań MES, ekwiwalentne obciążenia węzłowe.2
T-W-5Macierzowa postać związków konstytutywnych, macierz odkształcenie-przemieszczenie, obliczanie naprężeń.2
T-W-6Rodzaje elementów skończonych: prętowy, belkowy, płaskiego stanu naprężenia, przestrzenne - funkcje kształtu i macierze odkształcenie-przemieszczenie dla poszczególnych typów elementów.3
T-W-7Macierz geometryczna, analiza stateczności MES.1
T-W-8Zaliczenie zajęć.1
15

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Uczestnictwo w zajęciach15
A-L-2Przygotowanie do zajęć12
A-L-3Opracowanie i analiza wyników22
49
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1uczestnictwo w zajęciach15
A-W-2Studiowanie literatury4
A-W-3Przygotowanie do zaliczenia6
25
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięO_1A_B21_W01ma wiedzę w zakresie podstaw modelowania numerycznego, analizy wytrzymałościowej i optymalizacji konstrukcji metodą elementów skończonych
Odniesienie do efektów kształcenia dla kierunku studiówO_1A_W07ma wiedzę w zakresie mechaniki ogólnej, w tym statyki, kinematyki, dynamiki, teorii drgań oraz mechaniki płynów
O_1A_W18ma wiedzę w zakresie konstrukcji obiektów oceanotechnicznych, metod doboru i optymalizacji elementów konstrukcyjnych oraz analizy ich wytrzymałości
O_1A_W22ma wiedzę w zakresie modelowania i optymalizacji systemów oceanotechnicznych i procesów technologicznych
Cel przedmiotuC-1Zapoznanie studentów z podstawami metody elementów skończonych jako narzędzia analizy wytrzymałościowej konstrukcji.
Treści programoweT-W-7Macierz geometryczna, analiza stateczności MES.
T-W-8Zaliczenie zajęć.
T-W-1Wprowadzenie do metod numerycznych wytrzymałościowej analizy konstrukcji.
T-W-5Macierzowa postać związków konstytutywnych, macierz odkształcenie-przemieszczenie, obliczanie naprężeń.
T-W-2Podstawy metody elementów skończonych: pojecie sztywności i podatności, transformacja, macierz sztywności, agregacja macierzy sztywności elementów, solvery: dla posaci pasmowej, skyline zapisu macierzy sztywności, solver frontalny. Warunki brzegowe, wektor obciążeń, rozwiązanie układów równań, wyznaczanie naprężeń.
T-W-3Siatka podziału na ES, aspekty geometryczne generowania siatki, numeracja węzłów, automatyczna generacja siatki podziału
T-W-6Rodzaje elementów skończonych: prętowy, belkowy, płaskiego stanu naprężenia, przestrzenne - funkcje kształtu i macierze odkształcenie-przemieszczenie dla poszczególnych typów elementów.
T-W-4Przemieszczenia przygotowane, zasada prac przygotowanych, pojęcie funkcji kształtu, wyprowadzenie równań MES, ekwiwalentne obciążenia węzłowe.
T-L-5Analiza ram plaskich pod wzgledem wytrzymałosciowym.
T-L-2Analiza prętów rozciąganych i ściskanych pod wzgledem wytrzymałosciowym.
T-L-3Analiza plaskich układów kratowych pod wzgledem wytrzymałosciowym.
T-L-4Analiza przestrzennych układów kratowych pod względem wytrzymałościowym.
T-L-6Analiza ram przestrzennych pod wzgledem wytrzymałosciowym.
T-L-7Analiza belek zginanych pod wzgledem wytrzymałosciowym.
Metody nauczaniaM-1Metody podające: wykład informacyjny, objaśnienie lub wyjaśnienie.
M-2Metody problemowe: wykład problemowy.
M-3Metody praktyczne: pokaz, ćwiczenia przedmiotowe.
Sposób ocenyS-2Ocena podsumowująca: Ocena na podstawie wyników pracy zaliczeniowej (wykłady).
Kryteria ocenyOcenaKryterium oceny
2,0nie ma wiedzy w zakresie podstaw modelowania numerycznego, analizy wytrzymałościowej i optymalizacji konstrukcji metodą elementów skończonych
3,0ma wiedzę w zakresie podstaw modelowania numerycznego, analizy wytrzymałościowej i optymalizacji konstrukcji metodą elementów skończonych niezbędną do rozwiązania problemów na podstawowym poziomie trudności.
3,5ma wiedzę w zakresie podstaw modelowania numerycznego, analizy wytrzymałościowej i optymalizacji konstrukcji metodą elementów skończonych niezbędną do rozwiązania problemów na średnim poziomie trudności.
4,0ma wiedzę w zakresie podstaw modelowania numerycznego, analizy wytrzymałościowej i optymalizacji konstrukcji metodą elementów skończonych niezbędną do rozwiązania problemów na zaawansowanym poziomie trudności.
4,5ma wiedzę w zakresie podstaw modelowania numerycznego, analizy wytrzymałościowej i optymalizacji konstrukcji metodą elementów skończonych niezbędną do sformułowania i rozwiązania problemów na średnim poziomie trudności.
5,0ma wiedzę w zakresie podstaw modelowania numerycznego, analizy wytrzymałościowej i optymalizacji konstrukcji metodą elementów skończonych niezbędną do sformułowania i rozwiązania problemów na zaawansowanym poziomie trudności.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięO_1A_B21_U01potrafi przeprowadzać symulacje numeryczne wytrzymałości konstrukcji, interpretować wyniki i wyciągać wnioski
Odniesienie do efektów kształcenia dla kierunku studiówO_1A_U06potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
Cel przedmiotuC-1Zapoznanie studentów z podstawami metody elementów skończonych jako narzędzia analizy wytrzymałościowej konstrukcji.
Treści programoweT-W-7Macierz geometryczna, analiza stateczności MES.
T-W-8Zaliczenie zajęć.
T-W-1Wprowadzenie do metod numerycznych wytrzymałościowej analizy konstrukcji.
T-W-5Macierzowa postać związków konstytutywnych, macierz odkształcenie-przemieszczenie, obliczanie naprężeń.
T-W-2Podstawy metody elementów skończonych: pojecie sztywności i podatności, transformacja, macierz sztywności, agregacja macierzy sztywności elementów, solvery: dla posaci pasmowej, skyline zapisu macierzy sztywności, solver frontalny. Warunki brzegowe, wektor obciążeń, rozwiązanie układów równań, wyznaczanie naprężeń.
T-W-3Siatka podziału na ES, aspekty geometryczne generowania siatki, numeracja węzłów, automatyczna generacja siatki podziału
T-W-6Rodzaje elementów skończonych: prętowy, belkowy, płaskiego stanu naprężenia, przestrzenne - funkcje kształtu i macierze odkształcenie-przemieszczenie dla poszczególnych typów elementów.
T-W-4Przemieszczenia przygotowane, zasada prac przygotowanych, pojęcie funkcji kształtu, wyprowadzenie równań MES, ekwiwalentne obciążenia węzłowe.
T-L-5Analiza ram plaskich pod wzgledem wytrzymałosciowym.
T-L-2Analiza prętów rozciąganych i ściskanych pod wzgledem wytrzymałosciowym.
T-L-3Analiza plaskich układów kratowych pod wzgledem wytrzymałosciowym.
T-L-4Analiza przestrzennych układów kratowych pod względem wytrzymałościowym.
T-L-6Analiza ram przestrzennych pod wzgledem wytrzymałosciowym.
T-L-7Analiza belek zginanych pod wzgledem wytrzymałosciowym.
Metody nauczaniaM-1Metody podające: wykład informacyjny, objaśnienie lub wyjaśnienie.
M-2Metody problemowe: wykład problemowy.
M-3Metody praktyczne: pokaz, ćwiczenia przedmiotowe.
Sposób ocenyS-2Ocena podsumowująca: Ocena na podstawie wyników pracy zaliczeniowej (wykłady).
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi przeprowadzić symulacji numerycznych wytrzymałości konstrukcji, interpretować wyników i wyciągać wniosków
3,0Student potrafi przeprowadzać symulacje numeryczne wytrzymałości konstrukcji na podstawowym poziomie trudności, interpretować wyniki i wyciągać podstawowe wnioski
3,5Student potrafi przeprowadzać symulacje numeryczne wytrzymałości konstrukcji na średnim poziomie trudności, interpretować wyniki i wyciągać wnioski
4,0Student potrafi przeprowadzać symulacje numeryczne wytrzymałości konstrukcji na zaawansowanym poziomie trudności, interpretować wyniki i wyciągać wnioski
4,5Student potrafi przeprowadzać symulacje numeryczne wytrzymałości konstrukcji na średnim poziomie trudności, potrafi dokonać analizy wyników i wyciągać wnioski
5,0Student potrafi przeprowadzać symulacje numeryczne wytrzymałości konstrukcji na zaawansowanym poziomie trudności, potrafi dokonać analizy wyników i wyciągać wnioski