Wydział Inżynierii Mechanicznej i Mechatroniki - Mechanika i budowa maszyn (S2)
specjalność: eksploatacja pojazdów samochodowych
Sylabus przedmiotu Analiza i optymalizacja konstrukcji w projektowaniu maszyn:
Informacje podstawowe
Kierunek studiów | Mechanika i budowa maszyn | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | drugiego stopnia |
Tytuł zawodowy absolwenta | magister inżynier | ||
Obszary studiów | nauk technicznych | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Analiza i optymalizacja konstrukcji w projektowaniu maszyn | ||
Specjalność | komputerowo wspomagane projektowanie i wytwarzanie maszyn | ||
Jednostka prowadząca | Instytut Technologii Mechanicznej | ||
Nauczyciel odpowiedzialny | Grzegorz Szwengier <Grzegorz.Szwengier@zut.edu.pl> | ||
Inni nauczyciele | Daniel Jastrzębski <Daniel.Jastrzebski@zut.edu.pl> | ||
ECTS (planowane) | 4,0 | ECTS (formy) | 4,0 |
Forma zaliczenia | egzamin | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Znajomość podstawowych zagadnień mechaniki oraz podstaw konstrukcji maszyn. |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Uzyskanie wiedzy o metodach analitycznego wyznaczania statycznych i dynamicznych właściwości konstrukcji maszynowych. |
C-2 | Uświadomienie roli i znaczenia analiz konstrukcji maszyn w procesach ich projektowania. |
C-3 | Zyskanie praktycznych umiejętności modelowania konstrukcji maszyn metodami elementów skończonych. |
C-4 | Zyskanie umiejętności wyznaczanie optymalnych rozwiązań konstrukcyjnych. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | Modelowanie fizyczne i matematyczne wybranych podzespołów maszyn metodami elementów skończonych. | 10 |
T-L-2 | Przeprowadzanie analizy i dokonywanie oceny właściwości podzespołów maszyn w zakresie statyki i dynamiki konstrukcji. | 10 |
T-L-3 | Wyznaczanie optymalnych rozwiazań konstrukcyjnych podzespołów maszyn ze względu na wytypowane wskażniki oceny ich właściwości. | 10 |
30 | ||
wykłady | ||
T-W-1 | Przedmiot i cele analizy oraz optymalizacji konstrukcji. Rola oceny wytrzymałościowych, statycznych, dynamicznych i cieplnych właściwości maszyn w procesie projektowo-konstrukcyjnym. Podejmowanie decyzji projektowych na podstawie wskaźników ocen właściwości. | 3 |
T-W-2 | Fizyczne i matematyczne modele konstrukcji maszynowych. Koncepcje modelowania metodami sztywnych, odkształcalnych i hybrydowych elementów skończonych. Zasady i prawa mechaniki w procesach modelowania. Schematy realizacji metod elementów skończonych; budowanie i rozwiązywanie modeli statyki oraz dynamiki konstrukcji. Modele liniowe i nieliniowe. Zagadnienia kontaktowe w modelowaniu maszyn. | 15 |
T-W-3 | Algorytmizacja, procedury wykonawcze i oprogramowania metod analizy konstrukcji; wybrane zagadnienia numeryczne. Możliwości i cechy użytkowe wytypowanych, profesjonalnych systemów oprogramowania metod elementów skończonych. Zastosowania tych systemów do praktyki inżynierskiej. | 6 |
T-W-4 | Analitycznie wyznaczane wskaźniki oceny właściwości maszyn jako funkcje celu przy optymalizacji ich rozwiazań konstrukcyjnych. Wybór wyróżników konstrukcyjnych maszyn - jako zmiennych decyzyjnych - przy wyznaczaniu rozwiązań optymalnych. Przykłady optymalizacji konstrukcji maszynowych. | 6 |
30 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | Uczestnictwo w zajęciach. | 45 |
A-L-2 | Studiowanie literatury. | 16 |
A-L-3 | Przygotowanie się do zaliczenia. | 5 |
66 | ||
wykłady | ||
A-W-1 | Uczestnictwo w zajęciach. | 30 |
A-W-2 | Analiza treści wykładów i studiowanie literatury. | 12 |
A-W-3 | Przygotowanie się do egzaminu. | 8 |
A-W-4 | Konsultacje. | 4 |
54 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Wykład informacyjny. |
M-2 | Ćwiczenia laboratoryjne. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena podsumowująca: Ocena z egzaminu, weryfikująca stopień opanowania treści przedmiotowych przez studenta. |
S-2 | Ocena formująca: Ocena z realizacji poszczególnych ćwiczeń laboratoryjnych. |
S-3 | Ocena podsumowująca: Uśredniona ocena z zaliczonych ćwiczeń laboratoryjnych. |
S-4 | Ocena podsumowująca: Ocena kompetencji personalnych i społecznych - intuicyjna w formie aprobaty. |
Zamierzone efekty kształcenia - wiedza
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|
MBM_2A_KWP/02_W01 Student powienien posiąść wiedzę o roli analizy konstrukcji w nowocześnie rozumianym procesie projektowo-konstrukcyjnym. Powinien poznać podstawowe metody analizy właściwości maszyn. Powinien zyskać wiedzę o formułowaniu wyróżników konstrukcyjnych maszyn, jako zmiennych decyzyjnych procesu optymalizacji konstrukcji ze względu na oceny jej właściwości statycznych i dynamicznych. | MBM_2A_W04, MBM_2A_W05, MBM_2A_W01 | T2A_W01, T2A_W03, T2A_W04 | C-1, C-2 | T-W-1, T-W-2, T-W-4 | M-1, M-2 | S-1, S-3, S-2 |
Zamierzone efekty kształcenia - umiejętności
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|
MBM_2A_KWP/02_U01 Student potrafi budować fizyczne i matematyczne modele elementów i zespołów konstrukcyjnych maszyn metodami elementów skończonych. Zyskuje umiejetność współpracy z systemami oprogramowania tych metod. Potrafi interpretować wyniki analizy statycznych i dynamicznych właściwości maszyn. Umie dokonywać optymalizacji konstrukcji projektowanych urządzeń. | MBM_2A_U07, MBM_2A_U08, MBM_2A_U09 | T2A_U07, T2A_U08, T2A_U09 | C-3, C-4 | T-L-1, T-L-2, T-L-3 | M-1, M-2 | S-1, S-3 |
Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|
MBM_2A_KWP/02_K01 Kształtowanie postawy studenta w celu uświadomienia konieczności ciągłego rozwoju osobistego oraz pracy zespołowej. | MBM_2A_K01, MBM_2A_K03, MBM_2A_K04 | T2A_K01, T2A_K03, T2A_K04 | C-2 | T-L-2, T-L-3 | M-1, M-2 | S-4 |
Kryterium oceny - wiedza
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
MBM_2A_KWP/02_W01 Student powienien posiąść wiedzę o roli analizy konstrukcji w nowocześnie rozumianym procesie projektowo-konstrukcyjnym. Powinien poznać podstawowe metody analizy właściwości maszyn. Powinien zyskać wiedzę o formułowaniu wyróżników konstrukcyjnych maszyn, jako zmiennych decyzyjnych procesu optymalizacji konstrukcji ze względu na oceny jej właściwości statycznych i dynamicznych. | 2,0 | Student nie opanował podstawowej wiedzy z zakresu przedmiotu. |
3,0 | Student opanował podstawową wiedzę z zakresu przedmiotu. Nie potrafi jednak kojarzyć i analizować nabytej wiedzy. | |
3,5 | Student opanował wiedzę w stopniu pośrednim między oceną 3,0 a 4,0. | |
4,0 | Student opanował podstawową wiedzę z zakresu przedmiotu. Zna ograniczenia i obszary jej stosowania. | |
4,5 | Student opanował wiedzę w stopniu pośrednim między oceną 4,0 a 5,0. | |
5,0 | Student opanował podstawową wiedzę z zakresu przedmiotu. Rozumie ograniczenia i zna obszary jej stosowania. Wiedzę tę potrafi kreatywnie analizować. |
Kryterium oceny - umiejętności
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
MBM_2A_KWP/02_U01 Student potrafi budować fizyczne i matematyczne modele elementów i zespołów konstrukcyjnych maszyn metodami elementów skończonych. Zyskuje umiejetność współpracy z systemami oprogramowania tych metod. Potrafi interpretować wyniki analizy statycznych i dynamicznych właściwości maszyn. Umie dokonywać optymalizacji konstrukcji projektowanych urządzeń. | 2,0 | Nie potrafi poprawnie rozwiązywać zadań dotyczących modelowania konstrukcji. Nie potrafi wyjaśnić sensu i celu działań wymaganych przy modelowaniu. Ma problemy z interpretacją i oceną wyników analizy i optymalizacji konstrukcji. |
3,0 | Student rozwiązuje podstawowe zadania zwiazane z modelowaniem konstrukcji. Popełnia przy tym pewne błędy. Ćwiczenia praktyczne realizuje poprawnie, ale w sposób bierny. | |
3,5 | Student posiadł umiejętności w stopniu pośrednim między ocenami 3,0 a 4,0. | |
4,0 | Student sprawnie rozwiązuje zadania zwiazane z modelowaniem konstrukcji. Ćwiczenia praktyczne realizuje poprawnie. Student umiejętnie kojarzy i analizuje nabytą wiedzę. | |
4,5 | Student posiadł umiejętności w stopniu pośrednim między ocenami 4,0 a 5,0. | |
5,0 | Student bardzo dobrze i sprawnie rozwiązuje zadania zwiazane z modelowaniem konstrukcji. Ćwiczenia praktyczne realizuje wzorowo. Jest aktywny i wnikliwie potrafi inerpretowac oraz oceniać uzyskiwane wyniki. |
Literatura podstawowa
- Kruszewski J. i inni, Metoda elementów skończonych w dynamice konstrukcji, Arkady, Warszawa, 1984
- Zienkiewicz O.C., Metoda elementów skończonych, Arkady, Warszawa, 1977
- Kusiak M., Optymalizacja. Wybrane metody z przykładami zastosowań., PWN, Warszawa, 2009
Literatura dodatkowa
- Kruszewski J. i inni, Metoda sztywnych elementów skończonych w dynamice konstrukcji, WNT, Warszawa, 1997
- Tarnowski W., Podstawy projektowania technicznego, WNT, Warszawa, 1997