Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Informatyki - Informatyka (N2)
specjalność: inżynieria oprogramowania

Sylabus przedmiotu Algorytmy rozpoznawania wzorców - Przedmiot obieralny II:

Informacje podstawowe

Kierunek studiów Informatyka
Forma studiów studia niestacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister
Obszary studiów nauk technicznych
Profil ogólnoakademicki
Moduł
Przedmiot Algorytmy rozpoznawania wzorców - Przedmiot obieralny II
Specjalność grafika komputerowa i systemy multimedialne
Jednostka prowadząca Katedra Systemów Multimedialnych
Nauczyciel odpowiedzialny Paweł Forczmański <Pawel.Forczmanski@zut.edu.pl>
Inni nauczyciele Dariusz Frejlichowski <dfrejlichowski@wi.zut.edu.pl>
ECTS (planowane) 2,0 ECTS (formy) 2,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny 11 Grupa obieralna 1

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW3 10 1,00,50zaliczenie
laboratoriaL3 16 1,00,50zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Znajomość podstawowej wiedzy związanej z przetwarzaniem, analizą i rozpoznawaniem obrazów oraz grafiką komputerową i reprezentacją cyfrową obrazów.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zapoznanie studentów z aktualnymi problemami i trendami w dziedzinie rozpoznawania wzorców na przykładzie rozpoznawania obiektów wyekstrahowanych z obrazów cyfrowych.
C-2Wykształcenie umiejętności krytycznej oceny parametrów algorytmów i wskazania ich potencjalnego praktycznego zastosowania.
C-3Przytoczenie i dyskusja, a także szczegółowa analiza przykładowych praktycznych zastosowań algorytmów rozpoznawania wzorców w systemach komputerowych.
C-4Wykształcenie umiejętności krytycznej analizy literatury naukowej pod kątem doboru wydajnych algorytmów realizujących zadania rozpoznawania obrazów.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Algorytmy wysokopoziomowego rozumienia obrazów – przydzielanie obrazów do określonych kategorii na podstawie cech dominujących na obrazie.2
T-L-2Ekstrakcja obiektów pierwszoplanowych na obrazie.2
T-L-3Analiza tła obrazu w kontekście określenia kontekstu informacji towarzyszącego obrazowi.2
T-L-4Wydobycie kształtu z obrazu.2
T-L-5Deskryptory kształtu w rozumieniu obrazów.4
T-L-6Ogólna analiza kształtu.4
16
wykłady
T-W-1Algorytmy rozumienia sceny.2
T-W-2Wybrane aspekty widzenia wysokopoziomowego.1
T-W-3Najważniejsze wyzwania współczesnych systemów rozumienia obrazów - okluzja, deformacje, szum, itd.1
T-W-4Wybrane aspekty semantycznej analizy sceny.1
T-W-5Wybrane zaawansowane algorytmy przetwarzania, analizy i rozpoznawania obrazów.2
T-W-6Układy współrzędnych w zadaniach przetwarzania i rozpoznawania obrazów.2
T-W-7Wydzielanie cech z obrazu na potrzeby rozpoznawania.1
10

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Praca na zajęciach laboratoryjnych.16
A-L-2Samodzielne przygotowywanie materiałów do zajęć laboratoryjnych.9
A-L-3Przygotowanie samodzielne do zaliczenia końcowego.4
A-L-4Udział w konsultacjach.1
30
wykłady
A-W-1Uczestnictwo w zajęciach.10
A-W-2Samodzielne przygotowanie na bazie analizy literaturowej i źródeł internetowych przykładów do omówienia w ramach aktywnego uczestnictwa w dyskusji na wybranych wykładach.5
A-W-3Samodzielna analiza źródeł wskazanych na wykładach.10
A-W-4Przygotowanie do zaliczenia końcowego.5
30

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykłady wspomagane prezentacją multimedialną, połączone z dyskusja w trakcie zajęć. Na ćwiczeniach laboratoryjnych indywidualna realizacja zadań, przydzielonych przez wykładowcę.

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Laboratoria – ocena pracy i efektów uzyskanych w trakcie zajęć, realizowanych w formie indywidualnej pracy nad zadanym zagadnieniem
S-2Ocena podsumowująca: Wykład – ocena podsumowująca: zaliczenie pisemne z pytaniami otwartymi, dotyczącymi zagadnień prezentowanych i dyskutowanych na wykładzie, w formie opisowej. Końcowa ocena z przedmiotu = 0,5 * ocena z egzaminu + 0,5 * ocena z projektu.

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
I_2A_D17/O/2-1_W01
Zna matematyczne podstawy wybranych algorytmów rozpoznawania wzorców.
I_2A_W01T2A_W01C-2, C-1T-W-6, T-W-5, T-W-1, T-L-3, T-L-5, T-L-4, T-L-2, T-L-1M-1S-2
I_2A_D17/O/2-1_W02
Ma wiedzę z zakresu zastosowania w praktyce wybranych algorytmów rozpoznawania wzorców.
I_2A_W05T2A_W04, T2A_W07C-4, C-3T-W-4, T-W-3, T-W-2, T-W-7, T-L-6M-1S-2

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
I_2A_D17/O/2-1_U01
Potrafi dobrać algorytmy rozpoznawania wzorców do realizacji wybranego zadania projektowego.
I_2A_U04T2A_U12, T2A_U16, T2A_U17, T2A_U18C-4, C-2, C-3T-W-5, T-W-1, T-W-2, T-W-7, T-L-3, T-L-5, T-L-6, T-L-2M-1S-1

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
I_2A_D17/O/2-1_W01
Zna matematyczne podstawy wybranych algorytmów rozpoznawania wzorców.
2,0Student nie ma dostatecznej wiedzy z zakresu zastosowań matematyki w algorytmach rozpoznawania wzorców.
3,0Student potrafi powtórzyć opanowaną wiedzę, związaną z prostymi technikami rozpoznawania wzorców, bazującymi na aparacie matematycznym. Zna podstawy matematyczne kategoryzacji, reprezentacji wybranych cech, opisu (w tym w zastosowaniach w ogólnej analizie) kształtu, stosowaniu różnorodnych układów współrzędnych danych obrazowych.
3,5Student potrafi bez problemu powtórzyć opanowaną wiedzę, związaną z wszystkimi zaprezentowanymi na wykładach technikami rozpoznawania wzorców, bazującymi na aparacie matematycznym. Rozumie aparat matematyczny kategoryzacji, reprezentacji wybranych cech, opisu (w tym w zastosowaniach w ogólnej analizie) kształtu, stosowaniu różnorodnych układów współrzędnych danych obrazowych.
4,0Student potrafi bez problemu powtórzyć opanowaną wiedzę, związaną z wszystkimi zaprezentowanymi na wykładach technikami rozpoznawania wzorców, bazującymi na aparacie matematycznym. Potrafi także wskazać na podstawie przeglądu literatury inne rozwiązania matematyczne, realizujące podobnie lub wydajniej wybrane problemy z zakresu rozpoznawania wzorców (w tym w szczególności danych multimedialnych). Rozumie i analizuje aparat matematyczny kategoryzacji, reprezentacji wybranych cech, opisu (w tym w zastosowaniach w ogólnej analizie) kształtu, stosowaniu różnorodnych układów współrzędnych danych obrazowych.
4,5Student potrafi bez problemu powtórzyć opanowaną wiedzę, związaną z wszystkimi zaprezentowanymi na wykładach technikami rozpoznawania wzorców, bazującymi na aparacie matematycznym. Potrafi także wskazać na podstawie przeglądu literatury inne rozwiązania matematyczne, realizujące podobnie lub wydajniej wybrane problemy z zakresu rozpoznawania wzorców (w tym w szczególności danych multimedialnych). Potrafi ocenić porównawczo cechy konkurencyjnych rozwiązań, a także dostosować je do wybranego zagadnienia praktycznego. Rozumie, analizuje i stosuje aparat matematyczny kategoryzacji, reprezentacji wybranych cech, opisu (w tym w zastosowaniach w ogólnej analizie) kształtu, stosowaniu różnorodnych układów współrzędnych danych obrazowych.
5,0Student potrafi bez problemu powtórzyć opanowaną wiedzę, związaną z wszystkimi zaprezentowanymi na wykładach technikami rozpoznawania wzorców, bazującymi na aparacie matematycznym. Potrafi także wskazać na podstawie przeglądu literatury inne rozwiązania matematyczne, realizujące podobnie lub wydajniej wybrane problemy z zakresu rozpoznawania wzorców (w tym w szczególności danych multimedialnych). Potrafi ocenić porównawczo cechy konkurencyjnych rozwiązań, a także dostosować je do wybranego zagadnienia praktycznego. Potrafi na podstawie swojej wiedzy modyfikować istniejące metody, z użyciem zaawansowanego aparatu matematycznego. Rozumie, analizuje, stosuje i ocenia aparat matematyczny kategoryzacji, reprezentacji wybranych cech, opisu (w tym w zastosowaniach w ogólnej analizie) kształtu, stosowaniu różnorodnych układów współrzędnych danych obrazowych.
I_2A_D17/O/2-1_W02
Ma wiedzę z zakresu zastosowania w praktyce wybranych algorytmów rozpoznawania wzorców.
2,0Student potrafi omówić wybrane podstawowe (przedstawione na wykładzie) algorytmy rozpoznawania wzorców w kontekście ich praktycznego zastosowania.
3,0Student potrafi omówić wybrane spośród przedstawionych na wykładach algorytmy rozpoznawania wzorców w kontekście ich praktycznego zastosowania.
3,5Student potrafi omówić przedstawione na wykładach algorytmy rozpoznawania wzorców w kontekście ich praktycznego zastosowania.
4,0Student rozumie i omawia przedstawione na wykładach algorytmy rozpoznawania wzorców w kontekście ich praktycznego zastosowania.
4,5Student rozumie, omawia i analizuje przedstawione na wykładach algorytmy rozpoznawania wzorców w kontekście ich praktycznego zastosowania. Potrafi także samodzielnie wskazać, omówić i analizować wybrane algorytmy rozpoznawania wzorców, wykraczające poza zakres materiału przedstawiony na zajęciach, opierając się np. na analizie źródeł różnego typu lub własnym doświadczeniu. Wskazuje też praktyczne aspekty ich wykorzystania.
5,0Student rozumie, omawia i analizuje przedstawione na wykładach algorytmy rozpoznawania wzorców w kontekście ich praktycznego zastosowania. Potrafi także samodzielnie wskazać, omówić i analizować wybrane algorytmy rozpoznawania wzorców, wykraczające poza zakres materiału przedstawiony na zajęciach, opierając się np. na analizie źródeł różnego typu lub własnym doświadczeniu. Wskazuje też praktyczne aspekty ich wykorzystania. Jest przy tym w stanie zaproponować dla nich nowe obszary praktycznych zastosowań.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
I_2A_D17/O/2-1_U01
Potrafi dobrać algorytmy rozpoznawania wzorców do realizacji wybranego zadania projektowego.
2,0Student nie potrafi dobrać algorytmów rozpoznawania wzorców do realizacji wybranego zadania projektowego.
3,0Student potrafi w podstawowym zakresie zaprojektować aplikację, realizującą wybrany problem rozpoznawania wzorców. Do tego celu stosuje wybrane spośród prezentowanych na wykładach, najprostsze algorytmy. Implementuje w podstawowym zakresie te algorytmy w wybranym języku wysokiego poziomu.
3,5Student potrafi w podstawowym zakresie zaprojektować aplikację, realizującą wybrany problem rozpoznawania wzorców. Do tego celu stosuje wybrane spośród prezentowanych na wykładach algorytmy. Świadomie wykorzystuje do tego celu odpowiednie narzędzia informatyczne. Implementuje następnie te algorytmy w wybranym języku wysokiego poziomu.
4,0Student potrafi zaprojektować aplikację, realizującą wybrany problem rozpoznawania wzorców, opierając się na wiedzy poznanej na zajęciach lub analizie literatury naukowej i źródeł internetowych. Świadomie wykorzystuje do tego celu odpowiednie narzędzia informatyczne. Potrafi krytycznie ocenić i na tej podstawie poprawić uzyskany projekt. Implementuje następnie te algorytmy w wybranym języku wysokiego poziomu.
4,5Student potrafi zaprojektować aplikację, realizującą wybrany problem rozpoznawania wzorców, opierając się na wiedzy poznanej na zajęciach lub analizie literatury naukowej i źródeł internetowych. Świadomie wykorzystuje do tego celu zaawansowane narzędzia informatyczne. Potrafi krytycznie ocenić i na tej podstawie poprawić uzyskany projekt. Sporządza dokumentację projektu. Implementuje, a następnie ocenia wydajność i w razie konieczności koryguje te algorytmy w wybranym języku wysokiego poziomu. Sporządza podstawową wersję dokumentacji uzyskanej aplikacji.
5,0Student potrafi zaprojektować aplikację, realizującą wybrany problem rozpoznawania wzorców, opierając się na wiedzy poznanej na zajęciach lub analizie literatury naukowej i źródeł internetowych. Świadomie wykorzystuje do tego celu zaawansowane narzędzia informatyczne. Potrafi krytycznie ocenić i na tej podstawie poprawić uzyskany projekt. Potrafi dokonać oceny porównawczej swojego projektu z innymi realizowanymi przez członków grupy lub istniejącymi i ogólnie dostępnymi w Internecie. Sporządza dokumentację projektu. Implementuje, a następnie ocenia wydajność i w razie konieczności koryguje te algorytmy w wybranym języku wysokiego poziomu. Potrafi ocenić i przekonująco omówić parametry, wydajność i skuteczność uzyskanej implementacji. Sporządza dokumentację uzyskanej aplikacji, uwzględniającą badania jej efektywności.

Literatura podstawowa

  1. S. Ullman, High-Level Vision. Object Recognition and Visual Cognition, The MIT Press, Cambridge, Massachusetts, 1996
  2. R. Jain, R. Kasturi, B.G. Schunck, Machine Vision, McGraw-Hill College, 1995
  3. R. Tadeusiewicz, Komputerowa analiza i przetwarzanie obrazów, Wydawnictwo Fundacji Postępu Telekomunikacji, Kraków, 1997
  4. M. Ostrowski (red.), Informacja obrazowa, WNT, 1992
  5. M. Borawski, Rachunek wektorowy w przetwarzaniu obrazów, Wyd. Uczelniane PS, Szczecin, 2007
  6. http://homepages.inf.ed.ac.uk/rbf/CVonline/, "CVonline - On-Line Compendium of Computer Vision", 2011

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Algorytmy wysokopoziomowego rozumienia obrazów – przydzielanie obrazów do określonych kategorii na podstawie cech dominujących na obrazie.2
T-L-2Ekstrakcja obiektów pierwszoplanowych na obrazie.2
T-L-3Analiza tła obrazu w kontekście określenia kontekstu informacji towarzyszącego obrazowi.2
T-L-4Wydobycie kształtu z obrazu.2
T-L-5Deskryptory kształtu w rozumieniu obrazów.4
T-L-6Ogólna analiza kształtu.4
16

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Algorytmy rozumienia sceny.2
T-W-2Wybrane aspekty widzenia wysokopoziomowego.1
T-W-3Najważniejsze wyzwania współczesnych systemów rozumienia obrazów - okluzja, deformacje, szum, itd.1
T-W-4Wybrane aspekty semantycznej analizy sceny.1
T-W-5Wybrane zaawansowane algorytmy przetwarzania, analizy i rozpoznawania obrazów.2
T-W-6Układy współrzędnych w zadaniach przetwarzania i rozpoznawania obrazów.2
T-W-7Wydzielanie cech z obrazu na potrzeby rozpoznawania.1
10

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Praca na zajęciach laboratoryjnych.16
A-L-2Samodzielne przygotowywanie materiałów do zajęć laboratoryjnych.9
A-L-3Przygotowanie samodzielne do zaliczenia końcowego.4
A-L-4Udział w konsultacjach.1
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w zajęciach.10
A-W-2Samodzielne przygotowanie na bazie analizy literaturowej i źródeł internetowych przykładów do omówienia w ramach aktywnego uczestnictwa w dyskusji na wybranych wykładach.5
A-W-3Samodzielna analiza źródeł wskazanych na wykładach.10
A-W-4Przygotowanie do zaliczenia końcowego.5
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_2A_D17/O/2-1_W01Zna matematyczne podstawy wybranych algorytmów rozpoznawania wzorców.
Odniesienie do efektów kształcenia dla kierunku studiówI_2A_W01Ma poszerzoną i pogłębioną wiedzę w zakresie wybranych działów matematyki teoretycznej oraz matematyki stosowanej
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_W01ma rozszerzoną i pogłębioną wiedzę z zakresu matematyki, fizyki, chemii i innych obszarów właściwych dla studiowanego kierunku studiów przydatną do formułowania i rozwiązywania złożonych zadań z zakresu studiowanego kierunku studiów
Cel przedmiotuC-2Wykształcenie umiejętności krytycznej oceny parametrów algorytmów i wskazania ich potencjalnego praktycznego zastosowania.
C-1Zapoznanie studentów z aktualnymi problemami i trendami w dziedzinie rozpoznawania wzorców na przykładzie rozpoznawania obiektów wyekstrahowanych z obrazów cyfrowych.
Treści programoweT-W-6Układy współrzędnych w zadaniach przetwarzania i rozpoznawania obrazów.
T-W-5Wybrane zaawansowane algorytmy przetwarzania, analizy i rozpoznawania obrazów.
T-W-1Algorytmy rozumienia sceny.
T-L-3Analiza tła obrazu w kontekście określenia kontekstu informacji towarzyszącego obrazowi.
T-L-5Deskryptory kształtu w rozumieniu obrazów.
T-L-4Wydobycie kształtu z obrazu.
T-L-2Ekstrakcja obiektów pierwszoplanowych na obrazie.
T-L-1Algorytmy wysokopoziomowego rozumienia obrazów – przydzielanie obrazów do określonych kategorii na podstawie cech dominujących na obrazie.
Metody nauczaniaM-1Wykłady wspomagane prezentacją multimedialną, połączone z dyskusja w trakcie zajęć. Na ćwiczeniach laboratoryjnych indywidualna realizacja zadań, przydzielonych przez wykładowcę.
Sposób ocenyS-2Ocena podsumowująca: Wykład – ocena podsumowująca: zaliczenie pisemne z pytaniami otwartymi, dotyczącymi zagadnień prezentowanych i dyskutowanych na wykładzie, w formie opisowej. Końcowa ocena z przedmiotu = 0,5 * ocena z egzaminu + 0,5 * ocena z projektu.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie ma dostatecznej wiedzy z zakresu zastosowań matematyki w algorytmach rozpoznawania wzorców.
3,0Student potrafi powtórzyć opanowaną wiedzę, związaną z prostymi technikami rozpoznawania wzorców, bazującymi na aparacie matematycznym. Zna podstawy matematyczne kategoryzacji, reprezentacji wybranych cech, opisu (w tym w zastosowaniach w ogólnej analizie) kształtu, stosowaniu różnorodnych układów współrzędnych danych obrazowych.
3,5Student potrafi bez problemu powtórzyć opanowaną wiedzę, związaną z wszystkimi zaprezentowanymi na wykładach technikami rozpoznawania wzorców, bazującymi na aparacie matematycznym. Rozumie aparat matematyczny kategoryzacji, reprezentacji wybranych cech, opisu (w tym w zastosowaniach w ogólnej analizie) kształtu, stosowaniu różnorodnych układów współrzędnych danych obrazowych.
4,0Student potrafi bez problemu powtórzyć opanowaną wiedzę, związaną z wszystkimi zaprezentowanymi na wykładach technikami rozpoznawania wzorców, bazującymi na aparacie matematycznym. Potrafi także wskazać na podstawie przeglądu literatury inne rozwiązania matematyczne, realizujące podobnie lub wydajniej wybrane problemy z zakresu rozpoznawania wzorców (w tym w szczególności danych multimedialnych). Rozumie i analizuje aparat matematyczny kategoryzacji, reprezentacji wybranych cech, opisu (w tym w zastosowaniach w ogólnej analizie) kształtu, stosowaniu różnorodnych układów współrzędnych danych obrazowych.
4,5Student potrafi bez problemu powtórzyć opanowaną wiedzę, związaną z wszystkimi zaprezentowanymi na wykładach technikami rozpoznawania wzorców, bazującymi na aparacie matematycznym. Potrafi także wskazać na podstawie przeglądu literatury inne rozwiązania matematyczne, realizujące podobnie lub wydajniej wybrane problemy z zakresu rozpoznawania wzorców (w tym w szczególności danych multimedialnych). Potrafi ocenić porównawczo cechy konkurencyjnych rozwiązań, a także dostosować je do wybranego zagadnienia praktycznego. Rozumie, analizuje i stosuje aparat matematyczny kategoryzacji, reprezentacji wybranych cech, opisu (w tym w zastosowaniach w ogólnej analizie) kształtu, stosowaniu różnorodnych układów współrzędnych danych obrazowych.
5,0Student potrafi bez problemu powtórzyć opanowaną wiedzę, związaną z wszystkimi zaprezentowanymi na wykładach technikami rozpoznawania wzorców, bazującymi na aparacie matematycznym. Potrafi także wskazać na podstawie przeglądu literatury inne rozwiązania matematyczne, realizujące podobnie lub wydajniej wybrane problemy z zakresu rozpoznawania wzorców (w tym w szczególności danych multimedialnych). Potrafi ocenić porównawczo cechy konkurencyjnych rozwiązań, a także dostosować je do wybranego zagadnienia praktycznego. Potrafi na podstawie swojej wiedzy modyfikować istniejące metody, z użyciem zaawansowanego aparatu matematycznego. Rozumie, analizuje, stosuje i ocenia aparat matematyczny kategoryzacji, reprezentacji wybranych cech, opisu (w tym w zastosowaniach w ogólnej analizie) kształtu, stosowaniu różnorodnych układów współrzędnych danych obrazowych.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_2A_D17/O/2-1_W02Ma wiedzę z zakresu zastosowania w praktyce wybranych algorytmów rozpoznawania wzorców.
Odniesienie do efektów kształcenia dla kierunku studiówI_2A_W05Ma rozszerzoną i podbudowaną teoretycznie wiedzę z zakresu metod informatyki wykorzystywanych do rozwiązywania problemów w wybranych obszarach nauki i techniki
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_W04ma podbudowaną teoretycznie szczegółową wiedzę związaną z wybranymi zagadnieniami z zakresu studiowanego kierunku studiów
T2A_W07zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu złożonych zadań inżynierskich z zakresu studiowanego kierunku studiów
Cel przedmiotuC-4Wykształcenie umiejętności krytycznej analizy literatury naukowej pod kątem doboru wydajnych algorytmów realizujących zadania rozpoznawania obrazów.
C-3Przytoczenie i dyskusja, a także szczegółowa analiza przykładowych praktycznych zastosowań algorytmów rozpoznawania wzorców w systemach komputerowych.
Treści programoweT-W-4Wybrane aspekty semantycznej analizy sceny.
T-W-3Najważniejsze wyzwania współczesnych systemów rozumienia obrazów - okluzja, deformacje, szum, itd.
T-W-2Wybrane aspekty widzenia wysokopoziomowego.
T-W-7Wydzielanie cech z obrazu na potrzeby rozpoznawania.
T-L-6Ogólna analiza kształtu.
Metody nauczaniaM-1Wykłady wspomagane prezentacją multimedialną, połączone z dyskusja w trakcie zajęć. Na ćwiczeniach laboratoryjnych indywidualna realizacja zadań, przydzielonych przez wykładowcę.
Sposób ocenyS-2Ocena podsumowująca: Wykład – ocena podsumowująca: zaliczenie pisemne z pytaniami otwartymi, dotyczącymi zagadnień prezentowanych i dyskutowanych na wykładzie, w formie opisowej. Końcowa ocena z przedmiotu = 0,5 * ocena z egzaminu + 0,5 * ocena z projektu.
Kryteria ocenyOcenaKryterium oceny
2,0Student potrafi omówić wybrane podstawowe (przedstawione na wykładzie) algorytmy rozpoznawania wzorców w kontekście ich praktycznego zastosowania.
3,0Student potrafi omówić wybrane spośród przedstawionych na wykładach algorytmy rozpoznawania wzorców w kontekście ich praktycznego zastosowania.
3,5Student potrafi omówić przedstawione na wykładach algorytmy rozpoznawania wzorców w kontekście ich praktycznego zastosowania.
4,0Student rozumie i omawia przedstawione na wykładach algorytmy rozpoznawania wzorców w kontekście ich praktycznego zastosowania.
4,5Student rozumie, omawia i analizuje przedstawione na wykładach algorytmy rozpoznawania wzorców w kontekście ich praktycznego zastosowania. Potrafi także samodzielnie wskazać, omówić i analizować wybrane algorytmy rozpoznawania wzorców, wykraczające poza zakres materiału przedstawiony na zajęciach, opierając się np. na analizie źródeł różnego typu lub własnym doświadczeniu. Wskazuje też praktyczne aspekty ich wykorzystania.
5,0Student rozumie, omawia i analizuje przedstawione na wykładach algorytmy rozpoznawania wzorców w kontekście ich praktycznego zastosowania. Potrafi także samodzielnie wskazać, omówić i analizować wybrane algorytmy rozpoznawania wzorców, wykraczające poza zakres materiału przedstawiony na zajęciach, opierając się np. na analizie źródeł różnego typu lub własnym doświadczeniu. Wskazuje też praktyczne aspekty ich wykorzystania. Jest przy tym w stanie zaproponować dla nich nowe obszary praktycznych zastosowań.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_2A_D17/O/2-1_U01Potrafi dobrać algorytmy rozpoznawania wzorców do realizacji wybranego zadania projektowego.
Odniesienie do efektów kształcenia dla kierunku studiówI_2A_U04Potrafi wybrać, krytycznie ocenić przydatność i zastosować metodę i narzędzia rozwiązania złożonego zadania inżynierskiego
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_U12potrafi ocenić przydatność i możliwość wykorzystania nowych osiągnięć (technik i technologii) w zakresie studiowanego kierunku studiów
T2A_U16potrafi zaproponować ulepszenia (usprawnienia) istniejących rozwiązań technicznych
T2A_U17potrafi dokonać identyfikacji i sformułować specyfikację złożonych zadań inżynierskich, charakterystycznych dla studiowanego kierunku studiów, w tym zadań nietypowych, uwzględniając ich aspekty pozatechniczne
T2A_U18potrafi ocenić przydatność metod i narzędzi służących do rozwiązania zadania inżynierskiego, charakterystycznego dla studiowanego kierunku studiów, w tym dostrzec ograniczenia tych metod i narzędzi; potrafi - stosując także koncepcyjnie nowe metody - rozwiązywać złożone zadania inżynierskie, charakterystyczne dla studiowanego kierunku studiów, w tym zadania nietypowe oraz zadania zawierające komponent badawczy
Cel przedmiotuC-4Wykształcenie umiejętności krytycznej analizy literatury naukowej pod kątem doboru wydajnych algorytmów realizujących zadania rozpoznawania obrazów.
C-2Wykształcenie umiejętności krytycznej oceny parametrów algorytmów i wskazania ich potencjalnego praktycznego zastosowania.
C-3Przytoczenie i dyskusja, a także szczegółowa analiza przykładowych praktycznych zastosowań algorytmów rozpoznawania wzorców w systemach komputerowych.
Treści programoweT-W-5Wybrane zaawansowane algorytmy przetwarzania, analizy i rozpoznawania obrazów.
T-W-1Algorytmy rozumienia sceny.
T-W-2Wybrane aspekty widzenia wysokopoziomowego.
T-W-7Wydzielanie cech z obrazu na potrzeby rozpoznawania.
T-L-3Analiza tła obrazu w kontekście określenia kontekstu informacji towarzyszącego obrazowi.
T-L-5Deskryptory kształtu w rozumieniu obrazów.
T-L-6Ogólna analiza kształtu.
T-L-2Ekstrakcja obiektów pierwszoplanowych na obrazie.
Metody nauczaniaM-1Wykłady wspomagane prezentacją multimedialną, połączone z dyskusja w trakcie zajęć. Na ćwiczeniach laboratoryjnych indywidualna realizacja zadań, przydzielonych przez wykładowcę.
Sposób ocenyS-1Ocena formująca: Laboratoria – ocena pracy i efektów uzyskanych w trakcie zajęć, realizowanych w formie indywidualnej pracy nad zadanym zagadnieniem
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi dobrać algorytmów rozpoznawania wzorców do realizacji wybranego zadania projektowego.
3,0Student potrafi w podstawowym zakresie zaprojektować aplikację, realizującą wybrany problem rozpoznawania wzorców. Do tego celu stosuje wybrane spośród prezentowanych na wykładach, najprostsze algorytmy. Implementuje w podstawowym zakresie te algorytmy w wybranym języku wysokiego poziomu.
3,5Student potrafi w podstawowym zakresie zaprojektować aplikację, realizującą wybrany problem rozpoznawania wzorców. Do tego celu stosuje wybrane spośród prezentowanych na wykładach algorytmy. Świadomie wykorzystuje do tego celu odpowiednie narzędzia informatyczne. Implementuje następnie te algorytmy w wybranym języku wysokiego poziomu.
4,0Student potrafi zaprojektować aplikację, realizującą wybrany problem rozpoznawania wzorców, opierając się na wiedzy poznanej na zajęciach lub analizie literatury naukowej i źródeł internetowych. Świadomie wykorzystuje do tego celu odpowiednie narzędzia informatyczne. Potrafi krytycznie ocenić i na tej podstawie poprawić uzyskany projekt. Implementuje następnie te algorytmy w wybranym języku wysokiego poziomu.
4,5Student potrafi zaprojektować aplikację, realizującą wybrany problem rozpoznawania wzorców, opierając się na wiedzy poznanej na zajęciach lub analizie literatury naukowej i źródeł internetowych. Świadomie wykorzystuje do tego celu zaawansowane narzędzia informatyczne. Potrafi krytycznie ocenić i na tej podstawie poprawić uzyskany projekt. Sporządza dokumentację projektu. Implementuje, a następnie ocenia wydajność i w razie konieczności koryguje te algorytmy w wybranym języku wysokiego poziomu. Sporządza podstawową wersję dokumentacji uzyskanej aplikacji.
5,0Student potrafi zaprojektować aplikację, realizującą wybrany problem rozpoznawania wzorców, opierając się na wiedzy poznanej na zajęciach lub analizie literatury naukowej i źródeł internetowych. Świadomie wykorzystuje do tego celu zaawansowane narzędzia informatyczne. Potrafi krytycznie ocenić i na tej podstawie poprawić uzyskany projekt. Potrafi dokonać oceny porównawczej swojego projektu z innymi realizowanymi przez członków grupy lub istniejącymi i ogólnie dostępnymi w Internecie. Sporządza dokumentację projektu. Implementuje, a następnie ocenia wydajność i w razie konieczności koryguje te algorytmy w wybranym języku wysokiego poziomu. Potrafi ocenić i przekonująco omówić parametry, wydajność i skuteczność uzyskanej implementacji. Sporządza dokumentację uzyskanej aplikacji, uwzględniającą badania jej efektywności.